

## Lecture 5

Hypothesis testing; analysing continuous and categorical data

















#### Outline

- Principles of statistical testing
- Comparing continuous variables (t-test)
- Comparing categorical variables (Chi<sup>2</sup> test)
- Non-parametric tests
- Stratification









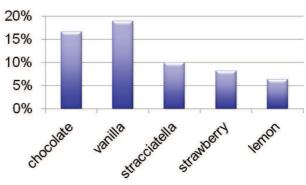






## Students prefer stawberry ice cream

Favourite types of ice cream in Ghana:





- In contrast, a survey showed 40% of students from Accra prefer strawberry ice cream
- ...5 students were interviewed ...

















# Why statistical testing?



"Problem" when interpreting results of research studies:

Study population ≠ target population

- Aim: draw conclusions about unknown target population based on the known study population
  - → three basic principles of statistical inference

















## Three basic principles of statistical inference

- Step 1: Estimate the variable of interest
  - → Calculation based on study population, result applied to target population
- Step 2: Calculate confidence intervals
  - → Confidence intervals since study population ≠ target population
- Step 3: Performing statistical tests
  - → Yes/No question to evaluate the variable of interest

















#### Statistical tests I



#### **Definition**

A statistical test is a method to investigate an assumption (hypothesis) about a particular parameter.

#### **Example**

I suspect that (or: I want to check whether) the average size of male students is different (taller) from the general population ( $\mu = 179$  cm).

A sample of n = 21 is available. It was found:

$$\bar{x} = 182 \ s = 5.6$$

Is the data consistent with the hypothesis?

**Research question:**  $\overline{x} > \mu$  or  $\overline{x} > 179 \text{ cm}$ 

















#### Statistical Tests II

 $\overline{x}$  = 179 cm (or smaller)  $H_0$ : **Null hypothesis** 

**Alternative hypothesis**  $\overline{x} > 179 \text{ cm}$ H₁:

The null hypothesis is always the logical opposite of the research question

#### Possible results of the statistical test are:

data support the null hypothesis (H<sub>0</sub> is not rejected)

data do not support the null hypothesis (H<sub>0</sub> is rejected, H<sub>1</sub> is accepted) ii.

















#### Statistical tests III

Statistical tests decide on two opposing hypotheses (H<sub>0</sub>, H<sub>1</sub>) concerning the target population based on observations in a subsample (study population).

Results of a statistical test are:

"The hypothesis H<sub>0</sub> is accepted"

"The observations provide a statistically non-significant result"

"The hypothesis H<sub>0</sub> is rejected"

"The observations provide a statistically significant result"

















#### Errors in statistical tests I



The following errors are possible:

Type I Error: occurs when the null hypothesis is rejected, although it is true

<u>Type II Error</u>: occurs when the null hypothesis is <u>not</u> rejected even though the alternative hypothesis is true

|       |         | Decision                 |                         |  |
|-------|---------|--------------------------|-------------------------|--|
|       |         | $H_0$ $H_1$              |                         |  |
| ۲     | H₀ true | Correct                  | False<br>(Type I Error) |  |
| Truth | H₁ true | False<br>(Type II Error) | Correct                 |  |

















#### Errors in statistical tests II

- Both errors <u>cannot</u> be ruled out completely!
- An epidemiological study is a kind of random process
  So error tolerances can be adopted as probabilities:

Type I Error: Error probability  $\alpha$  Type II Error: Error probability  $\beta$ 

- In statistical tests the error probabilities  $\alpha$  and  $\beta$  depend on each other:
  - $\rightarrow$  if  $\alpha$  is chosen to be small, then  $\beta$  increases















#### Statistical tests IV

The essential step in the deduction of a statistical test is to derive a test statistic (T) from the data, which has a known distribution under the null hypothesis.

#### Test statistic (T)

The value (T) is obtained from the sample data with a certain formula. This formula can be simple, but may also be complex.

#### Accept or reject the null hypothesis

The null hypothesis is rejected if **T** exceeds a certain critical value.

The null hypothesis is not rejected if T does not exceed a certain critical value

















# Comparing continuous variables (t-test)

- Based on the mean of a sample the one-sample t-test tests whether an estimate of a population is equal to, smaller or greater than an predetermined value
- Based on the means of two samples the two-sample t-test tests whether the estimates of two populations are equal, smaller or greater
  - paired samples e.g. blood pressure before and after a drug intake (same patient)
    - independent samples e.g. blood pressure with and without medication (two groups of patients)













## Example: one-sample t-test

Given a random sample  $x_1, x_2, ...., x_{21}$ 

The available data are the body sizes of 21 male students.

The following results are obtained from the sample:

**ESTIMATE OF THE MEAN:**  $\bar{x}$  = 182.24

**ESTIMATE OF THE VARIANCE**:  $s^2 = 31.36$ 

Value for comparison (hypothesis):  $\mu > 179$ 

















## Example: one-sample t-test

Null hypothesis  $\overline{x} = \mu$  $H_0$ :

Alternative hypothesis  $\overline{x} > \mu$ H₁:

test statistic is calculated by the following formula

$$T = \sqrt{n} \, \frac{\overline{x} - \mu}{s} \qquad T =$$

















#### Extract from t-distribution

|                    |       | $1 - \alpha$ (one sided test) |       |        |        |  |
|--------------------|-------|-------------------------------|-------|--------|--------|--|
| Degrees of freedom | 0.85  | 0.90                          | 0.95  | 0.99   | 0.995  |  |
| 1                  | 1.963 | 3.078                         | 6.314 | 31.821 | 63.656 |  |
| 5                  | 1.156 | 1.476                         | 2.015 | 3.365  | 4.032  |  |
| 10                 | 1.093 | 1.372                         | 1.812 | 2.764  | 3.169  |  |
| 15                 | 1.074 | 1.341                         | 1.753 | 2.602  | 2.947  |  |
| 20                 | 1.064 | 1.325                         | 1.725 | 2.528  | 2.845  |  |















# What are degrees of freedom?

- The number of independent observed values in a sample
- Example: An interview of 30 women (sample) results in the annual number of shoes bought by the women:

→ Mean: 6 pairs of shoes

 $\rightarrow$  Degrees of freedom (df) = n-1 = (30 - 1) = 29

- The first 29 observations are independent, but the 30th observation is fixed by the equation to calculate the mean of 6 pairs of shoes
- A contingency table (categorical data) gives the degrees of freedom df = (s-1)\*(z-1)

where:  $\mathbf{s} = \text{number of columns}$ ,  $\mathbf{z} = \text{number of lines}$ 

















#### Example: one-sample t-test

- Test at significance level  $\alpha$ = 0.05: Reject H<sub>0</sub> if T > T<sub>crit</sub> (here T<sub>crit</sub> = 1.725)
- "Significance level": A false rejection of the null hypothesis shall happen with a small probability  $\alpha$ . This probability is usually set to 0.05, i.e. 5%.
- 1.725 is the so-called "critical level" ( $T_{crit}$ ) and results from the tdistribution (for 20 degrees of freedom and  $\alpha$ = 0.05)
- Since 2.65 > 1.725, the null hypothesis is rejected
  - $\triangleright$  male students are significantly taller than the general population (with  $\alpha$ = 5%)











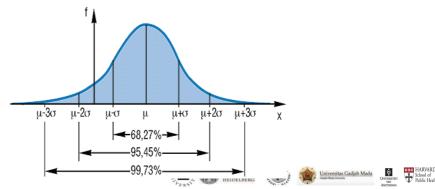






## p-value

- The p-value is the probability of obtaining a test statistic at least as extreme as the observed, given the null hypothesis is true.
- If the p-value  $< \alpha$  (usually 0.05) then the null hypothesis is rejected and the result is said to be statistically significant
- Statistical software such as SAS, STATA, SPSS, R, ... calculate the test statistic (T for the t-test) as well as the exact p-value









## Hypothesis testing in general

1. Formulate H<sub>0</sub> and H<sub>1</sub>

Usually H<sub>0</sub>: there is no difference.....

results are due to pure chance ......

H<sub>1</sub>: hypothesis of interest

- 2. Find an appropriate test statistic
- 3. Decide on  $\alpha$
- 4. Collect data

#### without computer

- 5. Find a critical value test from table
- 6. Calculate test statistic
- 7. Compare test statistic with critical value: If test statistic > than critical value → reject otherwise accept H<sub>0</sub>





#### with computer

- 5. Let the computer calculate statistic and p-value
- 6. Compare p-value with  $\alpha$ :

 $p=<\alpha \rightarrow reject H_0$  $p > \alpha \rightarrow accept H_0$ 













# Significance ≠ Relevance

Results of five trials of drugs to lower serum cholesterol

| Trial | Drug | Cost      | No of patients per group | Difference in<br>mean<br>cholesterol<br>(mg/decilitre) | S.E of<br>difference | 95% CI for<br>difference | P-Value |
|-------|------|-----------|--------------------------|--------------------------------------------------------|----------------------|--------------------------|---------|
| 1     | Α    | Cheap     | 30                       | -40                                                    | 40                   | -118.4 to 38.4           | 0.32    |
| 2     | Α    | Cheap     | 3000                     | -40                                                    | 4                    | -47.8 to -32.2           | <0.001  |
| 3     | В    | Cheap     | 40                       | -20                                                    | 33                   | -84.7 to 44.7            | 0.54    |
| 4     | В    | Cheap     | 4000                     | -2                                                     | 3.3                  | -8.5 to 4.5              | 0.54    |
| 5     | С    | Expensive | 5000                     | -5                                                     | 2                    | -8.9 to -1.1             | 0.012   |

















# Multiplicity of tests

- Given H<sub>0</sub> is true there is a 5% chance that we get a significant result at 5% level
- If we perform 100 tests and all 100 null hypotheses are true we expect 5 significant results (at 5% level).
- When performing many tests it may be necessary to control p-values to adjust for multiplicity of testing





















## Comparing categorical variables

- For each individual in the sample the outcome is one of two (or more) alternatives
  - > subject may have experienced a particular disease or remained healthy
  - ➤ Gender
  - > Categories of education or socioeconomic status (low, middle, high)













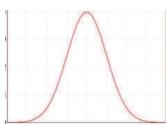




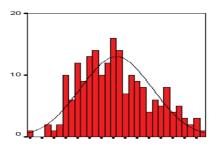
# $Chi^2 - Test (\chi^2 - Test)$

 $\chi^2$  - test tests distribution properties of a statistical population

- Are the two variables independent of each other?
- Are the frequencies distributed in a certain way?
- Example: Is the population normally distributed? (required for statistical tests)



















## Example Chi<sup>2</sup> - test ( $\chi^2$ -test)



- Are men more likely than women to wear glasses (with a significance level  $\alpha = 5\%$ )?
- Every person has two features: wearing glasses and the sex. Chi<sup>2</sup>-test tests whether the two traits are independent.
- Out of 100 men, 50 wear glasses and only 30 women out of 100

#### **Contingency table:**

|              | Men | Women |     |
|--------------|-----|-------|-----|
| Wear Glasses | 50  | 30    | 80  |
| No Glasses   | 50  | 70    | 120 |
|              | 100 | 100   | 200 |

















# Example Chi<sup>2</sup> - test ( $\chi^2$ -test)

|              | Men     | Women   |     |
|--------------|---------|---------|-----|
| Wear Glasses | 50 (40) | 30 (40) | 80  |
| No Glasses   | 50 (60) | 70 (60) | 120 |
|              | 100     | 100     | 200 |

O = observed value

E = expected value

$$X^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

E = (row total x column total)grand total



















## Example Chi<sup>2</sup> - test ( $\chi^2$ -test)

**Example**: Are men more likely than women to wear glasses ( $\alpha$ = 5%)?

$$\chi^2 = 8.33$$

- The value of  $\chi^2$  is looked up in a table of the chi-square distribution:
- Degrees of freedom depends on the number of fields in the table. Here there are 4 fields = 1df
- The  $\chi^2$  value of the sample, i.e. 8.33 is greater than 3.84.
- The study shows that men are significantly more likely to wear glasses (for  $\alpha = 5\%$ ).

|   | 1-α   |       |       |       |       |       |
|---|-------|-------|-------|-------|-------|-------|
| f | 0,900 | 0,950 | 0,975 | 0,990 | 0,995 | 0,999 |
| 1 | 2,71  | 3,84  | 5,02  | 6,63  | 7,88  | 10,83 |
| 2 | 4,61  | 5,99  | 7,38  | 9,21  | 10,60 | 13,82 |
| 3 | 6,25  | 7,81  | 9,35  | 11,34 | 12,84 | 16,27 |

















### Non-parametric tests

#### When to use non-parametric tests

- Data do not come from normal distribution
- Small sample size
- If transformation of data to normal distribution is hard to interpret
- Wilcoxon signed rank test
- Kruskal-Wallis test

















# Overview of test procedures

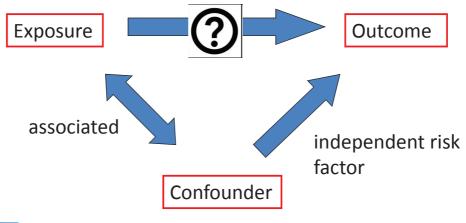
#### Type of variable

| Quantitative<br>(Normal distribution)<br>(Non-parametric) | Qualitative<br>(Binomial distribution)             |
|-----------------------------------------------------------|----------------------------------------------------|
| 1 sample:<br>One-sample t-test                            | test for a single proportion                       |
| Sign test,<br>Wilcoxon signed rank test                   |                                                    |
| 2 paired s                                                | amples:                                            |
| paired t-test                                             | McNemar χ²-test                                    |
| Sign test,<br>Wilcoxon signed rank test                   |                                                    |
| 2 indepen                                                 | dent samples:                                      |
| t-test<br>Welch-test                                      | χ²-test                                            |
| Wilcoxon rank sum test                                    |                                                    |
| ≥ 3 indepe                                                | endent samples:                                    |
| ANOVA                                                     | χ²-test                                            |
| Kruskal-Wallis-test                                       |                                                    |
|                                                           | C STATE INNERSTRATE TO THE Universitas Gadish Mada |



## What is confounding?

- A confounder is an independent risk factor of the outcome
- A confounder must be associated with the exposure



















## Controlling for confounding

- To control for confounding you must take the confounding variable out of the picture
- Control at the design stage
  - Randomization
  - Restriction
  - Matching
- Control at the analysis stage
  - Stratified analyses
  - Multivariate analyses





















#### Stratification

- · Stratification allows for assessment of confounding and effect modification
- "Fix" the level of the confounding variable and produce groups within which the confounder does not vary
- Then evaluate the association within each stratum of the confounder
- Within each stratum, the confounder cannot confound because it does not vary
- Question: Who is an epidemiologist?
- Answer: A physician broken down by age and sex!

















## An example

|                 | Smoker     | Nonsmoker  | Total       |
|-----------------|------------|------------|-------------|
| No heart attack | 340 (85%)  | 510 (85%)  | 850 (85%)   |
| Heart attack    | 60 (15%)   | 90 (15%)   | 150 (15%)   |
| Total           | 400 (100%) | 600 (100%) | 1000 (100%) |

- What is the risk ratio for heart attack comparing smokers with non-smokers?
- RR = 15% / 15% = 1.0
- What do we conclude?

















# Age stratification

| Age < 65 years  | Smoker    | Nonsmoker | Total      |
|-----------------|-----------|-----------|------------|
| No heart attack | 282       | 194       | 476        |
| Heart attack    | 18        | 6         | 24         |
| Total           | 300 (60%) | 200 (40%) | 500 (100%) |

| Age > 65 years  | Smoker    | Nonsmoker | Total      |
|-----------------|-----------|-----------|------------|
| No heart attack | 58        | 316       | 374        |
| Heart attack    | 42        | 84        | 126        |
| Total           | 100 (20%) | 400 (80%) | 500 (100%) |

Is smoking associated with age?

Prevalence ratio for smoking (old vs young) = 20% / 60% = 0.33

















## Age stratification

| Age < 65 years  | Smoker | Nonsmoker | Total      |
|-----------------|--------|-----------|------------|
| No heart attack | 282    | 194       | 476 (95%)  |
| Heart attack    | 18     | 6         | 24 (5%)    |
| Total           | 300    | 200       | 500 (100%) |

| Age > 65 years  | Smoker | Nonsmoker | Total      |
|-----------------|--------|-----------|------------|
| No heart attack | 58     | 316       | 374 (75%)  |
| Heart attack    | 42     | 84        | 126 (25%)  |
| Total           | 100    | 400       | 500 (100%) |

Is risk of heart attack associated with age? Risk ratio for heart attack (old vs young) = 25% / 5% = 5.0

















## Age stratification

| Age < 65 years  | Smoker     | Nonsmoker  | Total      |
|-----------------|------------|------------|------------|
| No heart attack | 282 (94%)  | 194 (97%)  | 476 (95%)  |
| Heart attack    | 18 (6%)    | 6 (3%)     | 24 (5%)    |
| Total           | 300 (100%) | 200 (100%) | 500 (100%) |

| Age > 65 years  | Smoker     | Nonsmoker  | Total      |
|-----------------|------------|------------|------------|
| No heart attack | 58 (58%)   | 316 (79%)  | 374 (75%)  |
| Heart attack    | 42 (42%)   | 84 (21%)   | 126 (25%)  |
| Total           | 100 (100%) | 400 (100%) | 500 (100%) |

Is risk of heart attack associated with smoking inside the age groups?

Young: Risk ratio for heart attack (smoking vs not) = 6% / 3% = 2.0

Old: Risk ratio for heart attack (smoking vs not) = 42% / 21% = 2.0















## What happened?

| Age < 65 years  | Smoker     | Nonsmoker  | Total      |
|-----------------|------------|------------|------------|
| No heart attack | 282 (94%)  | 194 (97%)  | 476 (95%)  |
| Heart attack    | 18 (6%)    | 6 (3%)     | 24 (5%)    |
| Total           | 300 (100%) | 200 (100%) | 500 (100%) |

| Age > 65 years  | Smoker     | Nonsmoker  | Total      |
|-----------------|------------|------------|------------|
| No heart attack | 58 (58%)   | 316 (79%)  | 374 (75%)  |
| Heart attack    | 42 (42%)   | 84 (21%)   | 126 (25%)  |
| Total           | 100 (100%) | 400 (100%) | 500 (100%) |

| Total           | Smoker     | Nonsmoker  | Total       |
|-----------------|------------|------------|-------------|
| No heart attack | 340 (85%)  | 510 (85%)  | 850 (85%)   |
| Heart attack    | 60 (15%)   | 90 (15%)   | 150 (15%)   |
| Total           | 400 (100%) | 600 (100%) | 1000 (100%) |





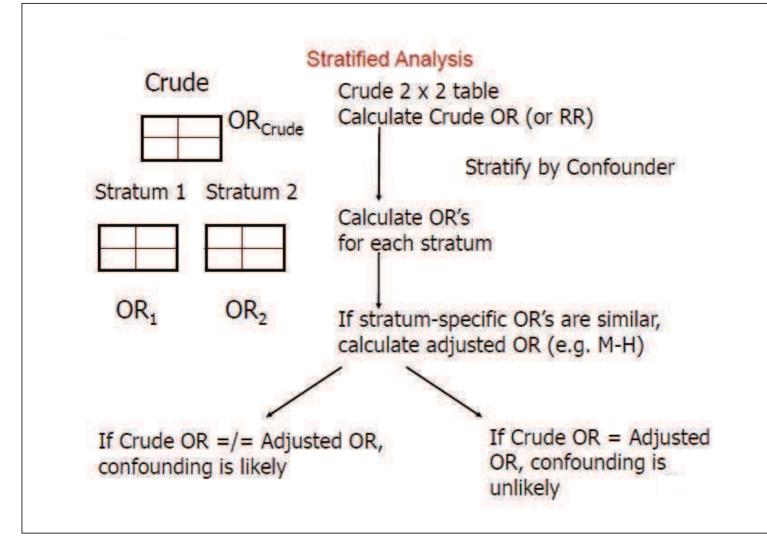














## Direction of confounding

- Confounding "pulls" the observed association away from the true association
- It can either exaggerate/over-estimate the association (positive confounding)
  - RR crude = 3
  - RR adjusted = 1
- It can hide/underestimate the true association (negative confounding)
  - -RR crude = 1
  - RR adjusted = 3

















## Crude vs. Adjusted Effects

- Crude:
  - does not take into account the effect of the confounding variable
- Adjusted:
  - accounts for the confounding variable(s)
  - generated using multivariate analyses (e.g. logistic regression)
- Confounding is likely when:
  - RR crude =/= RR adjusted
  - OR crude =/= OR adjusted















#### Limitations of stratification

- Cannot be used to adjust for several covariates simultaneously
  - adjustment is only for the association between one independent variable and one outcome at a time
- Can adjust for categorical covariates only
- When data is sparse the methods are not useful (i.e. can not calculate stratum-specific rates if the sample size is 0)

















## Multivariate analysis

- Stratified analysis works best when there are few strata (i.e. if only 1 or 2 confounders have to be controlled)
- If the number of potential confounders is large, multivariate analysis offers the only real solution
  - Can handle large numbers of confounders (e.g. could control for smoking, alcohol, physical activity, diet, in the same analysis)
  - Based on statistical regression models
  - Always done with statistical software packages









